
Computer Science Curriculum

Our vision for Computer Science GCSE:

• Computer Science is a dynamic and rapidly growing field of study and has
quickly become an integral part of modern society.

• Through our curriculum we aim to develop students' computational thinking
and encourage their creativity, enabling them to decompose complex problems
and find efficient solutions.

• We equip students with a deep understanding of computational theory and
emerging technologies and provide them with a rich experience in practical
programming so that they can bring their ideas to life.

• Our students leave us as digitally literate individuals who are well-prepared to
engage with and thrive in, an ever-changing technological world.

IDSALL SCHOOL

Data
Representations

Spreadsheets

Year 7

Year 8

Computing Learning Journey

Year 9

Introduction to
the computer lab

Networks

Introduction to
programming

Hardware and
Software

Web design

Further Python

Vector graphics

E-safety Advanced Python
programming

Computer
modelling

Computer Science

DITYear 10

Computer
systems

Computational
thinking and
algorithms

User Interfaces Collecting data

Year 11

DIT
Digital working

practices
BT

EC
 IC

T

Year 12

Year 12
Computational

thinking and
algorithms

Computer
systems

Year
13

Year
13

Programming
Project

Social Media

Databases

Dreamweaver

Information
technology

systems

The Big Picture- Intent:

Year 10 Computer Science has been designed to maximise progression. Topics covered revisit prior learning, as well as enabling students to deepen their understanding of the core concepts of
computer science. Topics will be taught from both papers concurrently, maximising chances to revisit more challenging content in retrieval practice. New content and topics are also introduced
throughout year 10. Computer programming is taught throughout year 10 to overcome the forgetting curve when students have lengthy periods of time without utilising these skills.

All students will be able to access the main content of all lessons and all students will be taught to the top with scaffolding, adaptive teaching and stretch
and challenge provided where necessary.

Key Summative
Assessments:

End of topic tests upon
completion of each
distinct topic. Some
questions on paper are
interleaved from
previous topics/across
papers

End of year/mock exams

Retrieval homework.

Live marking and low
stakes quizzing

Impact:
Students will have deepened their understanding of the computer system and know how instructions are fetched and executed by the CPU. Students will be more confident in their problem
solving abilities and will be able to apply computational thinking strategies to solve problems. The year 10 curriculum will foster students intellectual curiosity around topics delivered

YE
AR

 1
0

CU
RR

IU
LU

M
 O

VE
RV

IE
W

 –
Co

m
pu

te
r S

ci
en

ce

Autumn Term:
1.1 systems architecture
2.1 computational
thinking
1.2 memory and storage
2.2 algorithms

Spring term:
2.2 algorithms
1.3 networks
2.3 producing robust
programs
1.4 network security

Summer Term:
2.3 producing robust
programs
Mocks

Implementation:
When delivering programming content, teachers will model coding where the core skills are introduced. Students will then
be given a similar task to complete after the demonstration and may be given example code to copy and then edit. During
Students will then be given a real world concept scenario that require them to apply the skills learnt. This will help solidify
this knowledge, and also help students understand when and where to use programming techniques in solving computational
problems.

Lesson sequences have been carefully chosen to ensure that students have the required background knowledge to fully
understand and apply skills in relation to the topic. Therefore the lesson sequence may not match that of the exam
specification, however all content is covered.
This is especially important for paper 2, where students need concrete understanding of the key programming techniques
before applying these to producing GCSE Algorithms.

Lessons follow a consistent format beginning with a retrieval practice activity in the form of Revise, Recap, Review. This will
normally involve students answering 3 questions from last lesson, followed by 2 questions from previous study and one more
challenging question. Each activity will involve students being posed questions interleaved over multiple units delivered
throughout the year. Students are encouraged to work independently through the provision of scaffolding where required.
Computing lessons often involve the application or practical/technical skills. These will be modelled to students using the I do,
we do, you do approach. Students will be assessed at the end of each unit. Following assessment, students will complete a
follow up activity based upon the individual areas to be improved that have been identified.

Content Disciplinary Knowledge (Skills)
This is the actions taken within a

topic to gain
substantive knowledge

Substantive Knowledge
This is the specific, factual content
for the topic, which is connected

into a careful sequence of learning.

Prior Learning (Y7/8/9) Future learning (Y11)

Paper 1 • Illustrate the FDE cycle
• Understand the relationship between memory

and the CPU
• Understand factors that affect system

performance and justify system specification for
specific scenarios

• Critically compare secondary storage devices for
given scenarios

• Know the difference between LANs and WANs
• Understand the hardware required to create both

LAN and WAN networks
• Know the advantages and disadvantages of CS

and P2P networks and where each could be used
• To be able to recommend topologies for different

networking requirements
• To know how the internet VPNs and VLANs work

in unity

Numeracy:
• Calculate storage requirements for a given

scenario
• Convert between binary, decimal and

hexadecimal number systems
• Perform binary addition and shifting
• Show an understanding of how sound, text and

images can be represented using binary

• CPU FDE cycle
• Memory
• CPU Performance
• Secondary storage
• Calculate storage requirements
• Number systems
• Data representation
• LANs and WANs
• Network Hardware
• Client server and peer-to-peer
• Topologies
• The internet, VPNs and VLANs

Year 8 under the hood
Year 7 networks
Year 8 data representation

• Protocols and IP addresses
• Packet switching
• Malware
• Preventing Vulnerabilities
• The OS
• Utility and application software
• Ethical, Legal Moral issues
• Legislation

Content Disciplinary Knowledge (Skills)
This is the actions taken within a

topic to gain
substantive knowledge

Substantive Knowledge
This is the specific, factual con

tent
for the topic, which is connect

ed
into a careful sequence of lea

rning.

Prior Learning
(Y7/8/9)

Future learning (Y11)

Paper 2 • Apply computational thinking techniques to solve computational problems
• Confidently use selection and nested selection to solve computational

problems including the use of switch case statements
• Students can confidently use iteration to good effect in programs. Students

know when to select count controlled or condition controlled iteration
• Students can represent problems using flow charts and interpret flow

charts
• Students understand how linear and binary search algorithms work and

can articulate how the algorithm would find data in an example data set
• Students can create trace tables to debug programs
• Understand how bubble, merge and insertion sorts work. Articulate how

data is sorted on a given data set
• Students can connect external files to python programs
• Create SQL statements to select specific data. Interpret data returned from

a given SQL statement
• Be able to use lists/arrays of both 1 and 2 dimensions
• Create functions and procedures and know the difference between them
• Understand the importance of anticipating misuse and know how to use

iterative and final testing
Numeracy:
• Create truth tables for AND, OR and NOT gates. Use Boolean algebra to

represent logic circuits
• Revision of operators and how these act upon arguments
• Use variables and constants in pseudocode
• Be able to use string manipulation techniques to solve a problem

• Computational thinking
• Arguments and operators
• Variables and constants
• String manipulation
• Selection
• Iteration
• Flow charts
• Searching algorithms
• Trace tables
• Sorting algorithms
• File handling
• Databases
• Arrays
• Sub programs
• Robust programs and

testing
• Logic gates and Boolean

algebra

Year 8/9 python
programming

• Translators, compilers and
assemblers

• IDEs

Start

Year 10 Computer Science Learning
Journey

Year
11

Computational
thinking

End of year 10…..

Systems
Architecture

Memory and
storage

Programming
Fundamentals

Algorithms

File handling Networks
and

Topologies

Databases
Arrays and sub

programs

Network
Security

Cpu, architectures and
registers

LAN/WAN
Star and mesh
topologies

Selection, sequence
and iteration

RAM/ROM
Secondary Storage
Data representation

Searching and sorting

Abstraction,
decomposition and
algorithmic thinking

Lists and Arrays
Functions and
Procedures

SQL
Records
Fields

Threats and defence

The Big Picture- Intent:

Year 11 Computer Science has been designed to maximise progression.
All students will be able to access the main content of all lessons and all students will be taught to the top with scaffolding, adaptive teaching and stretch and challenge provided where
necessary.

Key Summative
Assessments:

End of topic tests upon
completion of each
distinct topic. Some
questions on paper
are interleaved from
previous topics/across
papers

End of year/mock
exams

Retrieval homework.

Live marking and low
stakes quizzing

Impact: Students will have deepened their understanding of the computer system and know how instructions are fetched and executed by the CPU. Students will be more confident in their
problem solving abilities and will be able to apply computational thinking strategies to solve problems. The year 10 curriculum will foster students intellectual curiosity around topics delivered

YE
AR

 1
1

CU
RR

IU
LU

M
 O

VE
RV

IE
W

 –
Co

m
pu

te
r S

ci
en

ce

Autumn Term:

Programming
fundamentals

Algorithms

Spring term:
Producing robust
programs
Boolean Logic

Summer Term:

Languages and IDEs
Exam preparation

Implementation:
When delivering programming content, teachers will model coding where the core skills are introduced. Students will then be
given a similar task to complete after the demonstration and may be given example code to copy and then edit. During Students
will then be given a real world concept scenario that require them to apply the skills learnt. This will help solidify this
knowledge, and also help students understand when and where to use programming techniques in solving computational
problems.

Lesson sequences have been carefully chosen to ensure that students have the required background knowledge to fully
understand and apply skills in relation to the topic. Therefore the lesson sequence may not match that of the exam specification,
however all content is covered.
This is especially important for paper 2, where students need concrete understanding of the key programming techniques before
applying these to producing GCSE Algorithms.

Lessons follow a consistent format beginning with a retrieval practice activity in the form of Revise, Recap, Review. This will
normally involve students answering 3 questions from last lesson, followed by 2 questions from previous study and one more
challenging question. Each activity will involve students being posed questions interleaved over multiple units delivered
throughout the year. Students are encouraged to work independently through the provision of scaffolding where required.
Computing lessons often involve the application or practical/technical skills. These will be modelled to students using the I do, we
do, you do approach. Students will be assessed at the end of each unit. Following assessment, students will complete a follow up
activity based upon the individual areas to be improved that have been identified.

Content Disciplinary Knowledge (Skills)
This is the actions taken within a

topic to gain
substantive knowledge

Substantive Knowledge
This is the specific, factual con

tent
for the topic, which is connect

ed
into a careful sequence of lea

rning.

Prior Learning
(Y7/8/9)

Future learning (Y12)

Paper 2 • Apply computational thinking techniques to solve computational problems
• Use variables and constants in pseudocode
• Be able to use string manipulation techniques to solve a problem
• Confidently use selection and nested selection to solve computational

problems including the use of switch case statements
• Students can confidently use iteration to good effect in programs. Students

know when to select count controlled or condition controlled iteration
• Students can represent problems using flow charts and interpret flow

charts
• Students understand how linear and binary search algorithms work and

can articulate how the algorithm would find data in an example data set
• Students can create trace tables to debug programs
• Understand how bubble, merge and insertion sorts work. Articulate how

data is sorted on a given data set
• Students can connect external files to python programs
• Create SQL statements to select specific data. Interpret data returned from

a given SQL statement
• Be able to use lists/arrays of both 1 and 2 dimensions
• Create functions and procedures and know the difference between them
• Understand the importance of anticipating misuse and know how to use

iterative and final testing
• Know how programming language is translated into machine code
• Understand when different types of translators would be used
• To know the features of an IDE and the advantages that the use of an IDE

has when developing solutions
Numeracy:
• Revision of operators and how these act upon arguments
• Create truth tables for AND, OR and NOT gates. Use Boolean algebra to

represent logic circuits

• Computational thinking
• Arguments and operators
• Variables and constants
• String manipulation
• Selection
• Iteration
• Flow charts
• Searching algorithms
• Trace tables
• Sorting algorithms
• File handling
• Databases
• Arrays
• Sub programs
• Robust programs and

testing
• Logic gates and Boolean

algebra
• Translators, compilers and

assemblers
• IDEs

Year 8/9 python
programming

H446 Computer Science

Start

Year 11 Computer Science Learning
Journey

KS5

Defensive Design

End of year 101…..

Operating
systems

Utilities

Testing

Boolean logic IDEs

Legal Ethical
and Moral

issues

Exam
preparation

Functions of the OS

Anticipating misuse

Final and iterative
testing

Backups
Defragmentation
Anti-virus

Ways in which
computing impacts
society
Moral issues
Automation and AI

Abstraction,
decomposition and
algorithmic thinking

Compilers, interpreters
and assemblers

Logic circuits
AND, OR NOT

	Computer Science Curriculum
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9

