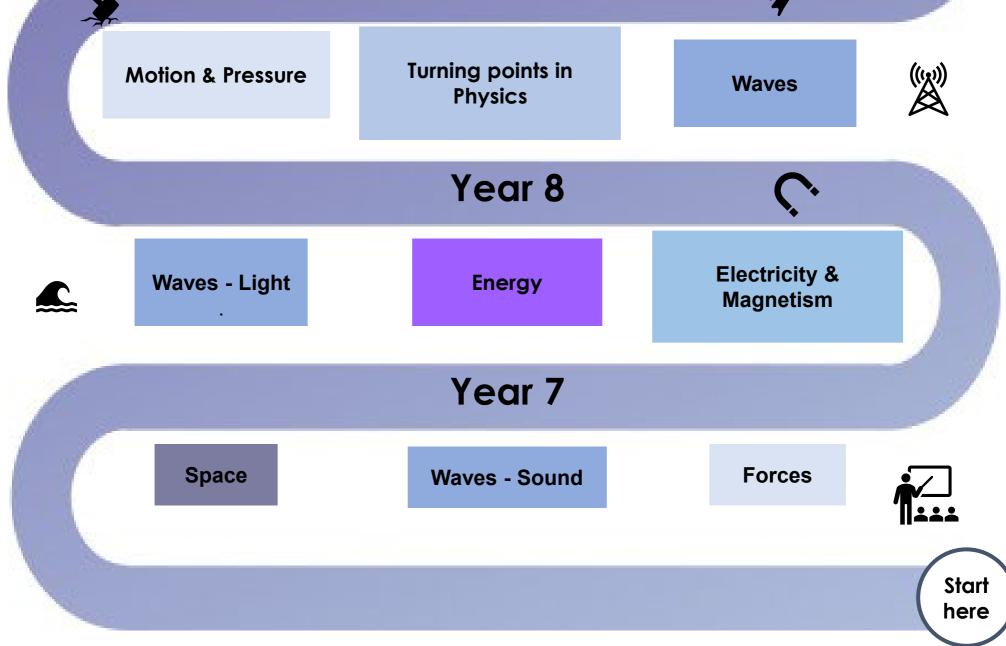
IDSALL SCHOOL

Physics Curriculum Vision


"Energy is liberated matter; matter is energy waiting to happen." Bill Bryson

Physics is the branch of science that deals with the structure of matter and how the fundamental constituents of the universe interact. In the widest sense, physics is concerned with all facets of nature on both the macroscopic and sub microscopic levels. Its scope of study embraces not only the behaviour of objects under the action of given forces but also the nature and origin of gravitational, electromagnetic, and nuclear force fields. Its ultimate objective is the formulation of a few comprehensive principles that bring together and explain all such disparate phenomena.

The Physics curriculum at Idsall School aims to foster scientific curiosity where students learn through inquiry and hands on learning. We have a strong emphasis on practical skills, which develop not only deep scientific understanding but also key transferable skills such as teamwork, leadership, and organisation. Our students are able to utilise their physics knowledge and understanding to understand important issues that affect our society

Idsall School NEXT Years 7-13 Physics Learning Journey This way to Training, **Employment or University** Year 13 **Periodic Motion Gravitational Fields Electric Fields Magnetic Fields Thermal Physics** Capacitance **Option Topic** Radioactivity Year 12 **Measurements Progressive and Stationary Mechanics Periodic Motion Particles** and their errors Waves Refraction, **Current Electricity Materials Thermal Physics Quantum Phenomena** diffraction and interference Year 11 E ZA Forces in Wave Forces & Electromagnetic Electromagnetism **Motion Balance Properties** Waves Motion Year 10 + **Energy Transfer Electricity in** Electric **Conservation &** Energy **Molecules &** Radioactivity Circuits by Heating Matter the home **Resources** dissipation of Energy

Year 9

The Big Picture - Intent:

Students will develop broad and balanced knowledge of the key topics of forces, waves, sound and space as the foundation of the physical world matter and energy. The forces topic is a fundamental topic within physics and a good understanding of which most of the physics topics build upon.

Physics has long been regarded as the fundamental science meaning that not only do other branches of science and engineering all stem from foundations in physics but by studying physics, we gain a deeper understanding of the entire universe around us. The physics curriculum is knowledge rich, constantly building upon prior knowledge in order to reinforce understanding at a deeper level. We aim for our students to develop into confident, resilient, and reflective learners who enjoy physics and can understand its context and influence in the modern world.

All students will be able to access the main content of all lessons and all students will be taught to the top with scaffolding, adaptive teaching and stretch and challenge provided where necessary

Implementation:In Year 7 physics there are 3 units: Forces, Sound and SpaceForces: Students move from concrete explorations of the effects of forces to abstract representations of forces, and an understanding of how contact forces arise as a result of interactions at a microscopic level.They meet the idea of a 'field', which is a fundamental concept in physics as a region where objects experience forces. They develop an understanding of the difference between weight and mass, and how to calculate weight; this is the beginning of quantifying and calculating that will continue throughout physics.Sound: Students build on their concrete explorations of sound at KS2 by applying a wave model to predict and explain a range of observations; echoes, how sounds of different loudness and pitch are produced, the range of human hearing, ultrasound and infrasound.Space: Students develop models involving the spinning and orbiting of the Moon about the Earth and the Earth about the Sun to explain the phases of the Moon, eclipses, seasonal changes on different parts of the Earth, and the tides.Each unit has separate key study skills and these will be fostered through observation, practical and independent practical skills. Students study skills will be developed through in class and independent assessment preparation.We ensure that we also prepare students in both practical and mathematical skills, for them to fully access the curriculum and explore investigations scientifically.	Key Summative Assessments:Baseline assessments will take place in the Autumn term.Formal End of unit tests will take place at the end of each unit.Cumulative end of Year exams in the summer term.Retrieval homework.Live marking and low stakes quizzing	Autumn Term: Baseline Testing Forces. Spring Term: Waves – Sound. Summer term: Space. Year 7 exam.
---	---	---

Impact:

Students will have increased understanding and confidence in physical substantive and disciplinary knowledge and be able to apply new skills to a variety of new and challenging scientific concepts. Students will know more and remember more. There will be an increase in attainment, evidenced in regular, formal and interleaved assessments. Students will have a firm grounding in the essential knowledge and skills they need to develop their critical thinking and problem-solving skills.

Content	Disciplinary Knowledge (Skills) This is the actions taken within a topic to gain substantive knowledge	Substantive Knowledge This is the specific, factual content for the topic, which is connected into a careful sequence of learning.	Prior Learning KS2	Future Learning
Forces	Maths: Substituting values into an equation. Changing the subject of an equation. Literacy: Prefixes/ suffixes of words. Correct use of key words Use of tier 2 & 3 scientific language in writing Sc1 – working scientifically: Explain what forces do, interaction pairs, differences between contact and non- contact. Use Hooke's Law to identify proportional stretching of a spring and describe in terms of bonds why solid surfaces provide a support force. Explain why drag forces and friction arise. Describe the effect of a field and link features to weight on different planets. Present force arrow drawings to show & explain the speed or direction of motion of objects. Using scales and scientific equipment. Suitably recording and presenting data.	 Types of forces – squashing & stretching, drag forces & friction, balanced & unbalanced Effects of forces on shape and motion Effects of magnetic, gravitational and electric fields. 	 Identify the effects of air resistance, water resistance and friction, that act between moving surfaces Recognise that some mechanisms including levers, pulleys and gears allow a smaller force to have a greater effect Explain that unsupported objects fall towards the Earth because of the force of gravity acting between the Earth and the falling object 	Motion and pressure
Waves: Sound	Maths:Substituting values into an equation.Practice calculationsLiteracy:Prefixes/ suffixes of words.Correct use of key wordsUse of tier 2 & 3 scientific language in writingSc1 - working scientifically:Estimating values or answers to numerical questions.Using scales and scientific equipment to measure soundUsing an oscilloscope to investigate waves.	 Waves Sound and energy transfer Loudness and pitch Detecting sound Echoes and ultrasound 	 Identify how sounds are made, associating some of them with something vibrating Recognise that vibrations from sounds travel through a medium to the ear Find patterns between the pitch of a sound and features of the 	Energy

	Compare the different types of waves and their features. Describe sound travel in terms of energy transfer in different media and contrast speed with the speed of light. Comparative evaluation of data		 object that produced it Find patterns between the volume of a sound and the strength of the vibrations that produced it Recognise that sounds get fainter as the distance from the sound source increases 	
Space	Maths: Interpret data from graphs and plot graphs. Literacy: Prefixes/ suffixes of words. Correct use of key words Use of tier 2 & 3 scientific language in writing Sc1 – working scientifically: Describe the objects that you can see in the night sky, the structure of the Universe. Name the objects in the Solar System and describe some similarities and differences between the planets of the Solar System and identify patterns in the spacing and diameters of planets. Explain the motion of the Sun, stars, and Moon across the sky, why seasonal changes happen and use data to show the effect of the Earth's tilt on temperature and day - length. Describe and explain the phases of the Moon and why eclipses happen. Students will use models to represent the phases of the moon and eclipses as a way of understanding large objects that are not easy to see.	 The night sky The solar system The earth The moon 	 Describe the movement of the Earth and other planets relative to the sun in the solar system Describe the movement of the moon relative to the Earth Describe the sun, Earth and moon as approximately spherical bodies Use the idea of the Earth's rotation to explain day and night and the apparent movement of the sun across the sky 	Waves: Light

The Big Picture – Intent

Students build upon their prior learning adding challenge and diversity, revisiting and extending previously learnt concepts further developing scientific knowledge, skills and thinking. Students study electricity and magnetism, energy, and waves (light) building upon the key previously learnt key physics fundamentals. The physics curriculum is knowledge rich, building upon prior knowledge in order to reinforce understanding at a deeper level. We aim for our students to develop into confident, resilient, and reflective learners who enjoy Physics and move on and up to be successful at KS3, GCSE, A-Level and beyond.

Physics lessons will focus on the substantive knowledge and content, but in addition teach methods of enquiry and investigation to stimulate creative thought. Pupils will ask questions and further develop an appreciation of the way Physics will affect their future on a personal, national and global level.

All students will be able to access the main content of all lessons and all students will be taught to the top with scaffolding, adaptive teaching and stretch and challenge provided where necessary.

Implementation:	Key Summative Assessments:	Autumn Term:
In Year 8 physics there are 3 units: Electricity and magnetism: Students investigate circuits exploring current and potential difference and the difference between parallel and series circuits. The concept of resistance also emerges from models and can be related to definitions of conductors and insulators. Students also study gravitational, electric, and magnetic fields in this topic including real life applications of electromagnets.	Formal End of unit tests will take place at the end of each unit.	Electricity & Magnetism Spring Term: Energy
Energy: Modelling of energy introduces the idea of energy stores and transfers. These are systems (one object or a group of objects) where energy can be calculated. Energy transfers are taught in terms of particles, radiation and temperature. Students use calculations to calculate work done & power	Cumulative end of Year exams in the summer term.	Summer term: Waves: Light
Waves: Light: Light can be modelled as rays or waves. The wave nature of light is less obvious to students than that of sound. Refraction is explained using the wave model, as is dispersion. Students learn about spectra; humans detect a small range of frequencies of both light and sound. Light is part of a wider electromagnetic spectrum where waves can be useful, but also damaging. Understanding our perception of colour requires knowledge of frequencies of light and specialized cells in the retina.	Retrieval homework. Live marking	Year 8 exam/
Each unit has separate key study skills and these will be fostered through observation, practical and independent practical skills. Students study skills will be developed through in class and independent assessment preparation. We ensure that we also prepare students in both practical and mathematical skills, for them to fully access the curriculum and explore investigations scientifically.	and low stakes quizzing	

Impact: Students will have increased understanding and confidence in physical substantive and disciplinary knowledge and be able to apply new skills to a variety of new and challenging scientific concepts. Students will know more and remember more. There will be an increase in attainment, evidenced in regular, formal and interleaved assessments. Students will continue to develop the essential knowledge and skills they need as they develop their critical thinking and problem-solving skills looking at the physical phenomena and fundamental laws of the world around them. We aim for our students to develop into confident, resilient, and reflective learners who enjoy Physics , are able to place it in context and link it to the other scientific disciplines and to their experience of the world at large

Content	Disciplinary Knowledge (Skills)	Substantive Knowledge	Prior Learning (KS2-Y7)	Future
	This is the actions taken within a	This is the specific, factual content		Learning (Y9)
	topic to gain	for the topic, which is connected		
	substantive knowledge	into a careful sequence		
		of learning.		
Electricity &	Maths: Substituting values into an equation	Electricity:	KS2: Electricity	Turning
Magnetism	(e.g. calculate resistance when potential	Circuits and current	• Construct a simple series electrical circuit,	points in
	difference and current are known).	 Potential difference 	identifying and naming its basic parts,	physics
	Changing the subject of an equation.	 Series and parallel 	including cells, wires, bulbs, switches and	
		Resistance	buzzers.	
	Literacy: Key terms & definitions in context.	Static electricity	Recognise some common conductors and	
			insulators, and associate metals with being	
	Sc1: Building circuits and taking		good conductors	
	measurements using ammeters and	Magnets and magnetic fields	KS2: Forces and magnets	
	voltmeters (Potential difference, current	 Electromagnets 	Notice that some forces need contact	
	and resistance).	• A field is a region where	between two objects, but magnetic forces	
		there is a force on an	can act at a distance.	
		object (a mass, charge, or	Observe how magnets attract or repel each	
		magnetic material).	other and attract some materials and not	
		• A field is an abstract	others.	
		concept, represented by	• Describe magnets as having two poles.	
		physical lines (which are	 Predict whether two magnets will attract or 	
		not the field).	repel each other, depending on which poles	
		• Compasses also show a	are facing.	
		magnetic field around		
		current carrying wires and		
		electromagnets		
		Our lives have been		
		changed immeasurably by		
		devices with motors.		
Energy	Maths: Substituting values into and	Energy resources	Y7: Sound	Motion and
	equation (e.g. Work done, power and cost	 Energy stores and 	• Y7: Particles and their behaviour	Pressure
	of domestic appliances).	transfers		

	calculate energy transferred using the power and time taken Manipulate formulaic relationship between energy and power • Manipulate formulaic relationship of work done and relate to levers and gears Literacy: Key terms & definitions in context. Sc1: Using simple gears and levers.	 Energy stores are systems (one object or a group of objects) where energy can be calculated. Energy stores are kinetic, gravitational potential, elastic potential, thermal, chemical, and nuclear Light, sound, heating, and electric current are not stores but methods of transferring energy between stores. Energy Work done Power 		Turning points in physics.
Waves: Light	 Maths: Using and measuring angles (acute and obtuse). Sc1: Predictions and models to record observations and understand scientific concepts. Drawing ray diagrams with accuracy and precision. Modelling: Students will use models to represent colours, light and mixing coloured light to relate these to the properties and wavelengths of light. 	 Properties of waves Properties and behaviour of light. Reflection Refraction How the eye and the camera work Combining colours, coloured filters and coloured objects. 	KS2: Light Recognise that light appears to travel in straight lines. Use the idea that light travels in straight lines to explain that objects are seen because they give out or reflect light into the eye. Explain that we see things because light travels from light sources to our eyes or from light sources to objects and then to our eyes Y7: Sound	Turning points in physics Key concepts: Waves

The Big Picture – Intent:

In Year 9 students draw together their physics learning in KS3 ready to apply knowledge and understanding to KS4 topics. The application of topic knowledge in Year 7 and 8 demands linking of concepts learnt and an increased demand in terms of conceptual understanding. Students study motion and pressure, turning points in physics and key concepts about waves. This is all explicitly linked to real world application of Physics.

The curriculum encompasses the national curriculum and follows a spiral structure, building upon prior knowledge in order to develop understanding at a deeper level. We aim for our students to develop into confident, resilient, and reflective learners who enjoy science and move on and up to be successful at KS3, GCSE and A-Level.

All students will be able to access the main content of all lessons and all students will be taught to the top with scaffolding, adaptive teaching and stretch and challenge provided where necessary.

Implementation:	Key Summative Assessments:	Autumn Term: Motion and pressure
In Year 9 physics there are 3 units: Motion and pressure: Students measure, describe and explain motion using ideas of forces. Students then move on to quantify it with calculations of speed. Using cross curricular graphing skills students interpret distance time graphs and link the shape of the graph to changes in speed & direction. Students links macroscopic phenomena, such as gas pressure, and the motion of particles on a microscopic scale, using ideas about forces. They distinguish between force and pressure, make calculations and carry out experiments. Turning points in physics: Students apply prior knowledge to explore forces in the solar system on a macro scale, the evidence behind universe expansion and the effect on light. Satellites and spacecraft are put into orbit around the earth and using knowledge of forces and rotation different orbits can be produced. The history of radioactivity is also introduced as well as the three types of radiation before finally looking at the real-world application of electromagnets. Key concepts: Waves: Students observe and describe the properties of mechanical and electromagnetic waves. Students compare transverse and longitudinal waves examining the relationship between the direction of propagation and the direction of the oscillations. Students analyse wave properties such as wavelength, amplitude, and period leading to the relationships between period, frequency and wave speed, frequency, and wavelength. Each unit has separate key study skills and these will be fostered through observation, practical and independent practical skills. Students study skills will be developed through in class and independent assessment preparation. We ensure that we also prepare students in both practical and mathematical skills, for them to fully access the curriculum and explore investigations scientifically.	Formal End of unit tests will take place at the end of each unit. Cumulative end of Year exams in the summer term. Retrieval homework. Live marking and low stakes quizzing	Spring Term: Turning points in physics Summer term: Key concepts: Waves Year 9 exam.

Impact:

Physics has long been regarded as the fundamental science meaning that not only do other branches of science and engineering all stem from foundations in physics but by studying physics, we gain a deeper understanding of the entire universe around us. Our curriculum and our teaching provide our students with the essential knowledge and skills that they need to develop their critical thinking and problem-solving skills which will enable them not only to pursue a wide range of careers but just as importantly allow them to satisfy their curiosity about the universe whether they simply want to know how a light bulb works or want to know what will happen to our solar system in five billion years. Students will know more and remember more. There will be an increase in attainment, evidenced in regular, formal and interleaved assessments.

Content	Disciplinary Knowledge (Skills) This is the actions taken within a topic to gain substantive knowledge	Substantive Knowledge This is the specific, factual content for the topic, which is connected into a careful sequence of learning.	Prior Learning (KS2-Y8)	Future Learning (GCSE)
Motion and pressure	Maths: Substituting values into an equation e.g. calculating speed, pressure or a moment of a force. Changing the subject of an equation. Drawing and interpreting data graphically. Literacy: Key terms & definitions in context. Sc1: Volume, depth and temperature in gas and water pressure. Using scientific equipment precisely and safely.	 Speed and distance-time graphs Pressure in gases and liquids. Turning forces. 	 KS2: Forces Notice that some forces need contact between two objects, Identify the effects of air resistance, water resistance and friction, that act between moving surfaces Recognise that some mechanisms including levers, pulleys and gears allow a smaller force to have a greater effect KS3: Types of forces – squashing & stretching, drag forces & friction, balanced & unbalanced Effects of forces on shape and motion 	P8: Forces in balance P9: Motion P10 Force and motion
Turning points in physics	Maths: Drawing and interpreting data graphically. Literacy: Key terms & definitions in context. Sc1: Using scientific equipment precisely and safely. Modelling: Objects that are to large or small to be seen.	 Gravitational attraction The solar system & forces. Redshift, the big band and universal expansion. Atomic model & isotopes Radiation Electromagnetism 	 KS2 Space: Explain that unsupported objects fall towards the Earth because of the force of gravity acting between the Earth and the falling object Describe the movement of the Earth and other planets relative to the sun in the solar system Describe the movement of the moon relative to the Earth Describe the sun, Earth and moon as approximately spherical bodies Use the idea of the Earth's rotation to explain day and night and the apparent movement of the sun across the sky 	P7 Radioactivity P13 Electromagnetism

			 Electricity and magnetism: Notice that some forces need contact between two objects, but magnetic forces can act at a distance. Observe how magnets attract or repel each other and attract some materials and not others. Describe magnets as having two poles. Predict whether two magnets will attract or repel each other, depending on which poles are facing. KS3 Electromagnets: A field is a region where there is a force on an object (a mass, charge, or magnetic material). A field is an abstract concept, represented by physical lines (which are not the field). Compasses also show a magnetic field around current carrying wires and electromagnets. Our lives have been changed immeasurably by devices with motors. 	
Waves	Maths: Substituting values into an equation. Changing the subject of an equation. Drawing and interpreting data graphically. Literacy: Key terms & definitions in context. Sc1: Using scientific equipment precisely and safely. Modelling: Appropriate models to explain waves.	 Longitudinal and transverse waves. Properties of waves. Waves can transfer energy Wave speed. Reflection and refraction. The electromagnetic spectrum. Uses of the different wavelengths in the electromagnetic spectrum. 	 KS2 Sound: Identify how sounds are made, associating some of them with something vibrating Recognise that vibrations from sounds travel through a medium to the ear Find patterns between the pitch of a sound and features of the object that produced it Find patterns between the volume of a sound and the strength of the vibrations that produced it Recognise that sounds get fainter as the distance from the sound source increases KS3 Sound: Using scales and scientific equipment to measure sound Using an oscilloscope to investigate waves. Compare the different types of waves and their features. Describe sound travel in terms of energy transfer in different media and contrast speed with the speed of 	P11 Wave properties P12 Electromagnetic waves

 light. Waves Sound and energy transfer Loudness and pitch Detecting sound Echoes and ultrasound KS2 Light: Recognise that light appears to travel in straight lines. Use the idea that light travels in straight lines to explain that objects are seen because they give out or reflect light into the eye. Explain that we see things because light travels from light sources to our eyes or from light sources to objects and then to our eyes KS3 Waves: Properties of waves Properties of waves Reflection Refraction
Reflection

The Big Picture – Intent:

Physics has long been regarded as the fundamental science meaning that not only do other branches of science and engineering all stem from foundations in physics but by studying physics, we gain a deeper understanding of the entire universe around us. Our curriculum and our teaching provide our students with the essential knowledge and skills that they need to develop their critical thinking and problem-solving skills which will enable them not only to pursue a wide range of careers.

The Physics papers cover the following topics:

Paper 1 – (Topics 18–21): Energy; Electricity; Particle model of matter; and Atomic structure.

Paper 2 – (Topics 22–24): Forces; Waves; and Magnetism and electromagnetism

All students will be able to access the main content of all lessons and all students will be taught to the top with scaffolding, adaptive teaching and stretch and challenge provided where necessary.

Implementation:

Students undertaking combined science have 10 science lessons a fortnight.

The units taught in Year 10 Physics are: *Energy; Electricity; Particle model of matter; and Atomic structure.*

At Key Stage 4 most students follow AQA GCSE Combined Science Trilogy. The specification covers Biology, Chemistry and Physics. This is a linear course with all the examinations at the end of year 11. Students will sit six examinations, two in Biology, two in Chemistry and two in Physics. Each examination is one hour and fifteen minutes in length and worth 16.7% of the final grade. Students can be entered at either Foundation or Higher tier and will attain the equivalent of two GCSEs at 9-1 grades. There are six papers: two biology, two chemistry and two physics. Students are exposed to a knowledge-rich, spiralised curriculum, with the introduction of aspirational career pathways embedded in all units, ranging from pathologists to electrical engineers. Additionally, students are given the opportunity to discuss 'big questions' around the moral, social and ethical implications of many areas of science

Students learn about science through purposeful practical activities as part of day-to-day teaching and learning. Students will also undertake required practicals in class in order to deepen their understanding of scientific concepts and develop their skills of investigating, observing, experimenting and testing the validity of scientific concepts ideas.

Key Summative Assessments:

All units include:

- Retrieval homework
- Live marking
- Low stake quizzing
- End of Unit Tests

Required practical tasks:

- Specific heat capacity
- Resistance
- IV characteristics
- Density
- Force and extension
- Force & acceleration
- Waves
- Radiation and absorption

Autumn Term:

Physics: Energy & energy resources.

Spring Term:

Physics: Particles at work: electricity.

Summer term:

Physics: Particles at work: radioactivity.

Impact: By the end of Year 10 students will be confident with the fundamental and more complex principles, knowledge and application of this knowledge in Physics.

They will be able to apply their Physics knowledge and skills to both familiar and unfamiliar situations using the analytical, questioning and critical thinking skills that they will have developed during their study of Physics in year 10.

Prior Knowledge

KS2: Forces

- Notice that some forces need contact between two objects,
- Identify the effects of air resistance, water resistance and friction, that act between moving surfaces
- Recognise that some mechanisms including levers, pulleys and gears allow a smaller force to have a greater effect

KS2: Space:

- Explain that unsupported objects fall towards the Earth because of the force of gravity acting between the Earth and the falling object
- Describe the movement of the Earth and other planets relative to the sun in the solar system
- Describe the movement of the moon relative to the Earth
- Describe the sun, Earth and moon as approximately spherical bodies
- Use the idea of the Earth's rotation to explain day and night and the apparent movement of the sun across the sky

KS2: Electricity and magnetism:

- Notice that some forces need contact between two objects, but magnetic forces can act at a distance.
- Observe how magnets attract or repel each other and attract some materials and not others.
- Describe magnets as having two poles.
- Predict whether two magnets will attract or repel each other, depending on which poles are facing.

KS2: Sound:

- Identify how sounds are made, associating some of them with something vibrating
- Recognise that vibrations from sounds travel through a medium to the ear
- Find patterns between the pitch of a sound and features of the object that produced it
- Find patterns between the volume of a sound and the strength of the vibrations that produced it
- Recognise that sounds get fainter as the distance from the sound source increases

KS2 Light:

- Recognise that light appears to travel in straight lines. Use the idea that light travels in straight lines to explain that objects are seen because they give out or reflect light into the eye.
- Explain that we see things because light travels from light sources to our eyes or from light sources to objects and then to our eyes

KS3 Motion and pressure:

- Speed and distance-time graphs
- Pressure in gases and liquids.
- Turning forces

KS3 Forces:

• Types of forces – squashing & stretching, drag forces & friction, balanced & unbalanced

• Effects of forces on shape and motion

KS3 Turning points in physics:

- Gravitational attraction
- The solar system & forces.
- Redshift, the big band and universal expansion.
- Atomic model & isotopes
- Radiation
- Electromagnetism

KS3 Electromagnets:

- A field is a region where there is a force on an object (a mass, charge, or magnetic material).
- A field is an abstract concept, represented by physical lines (which are not the field).
- Compasses also show a magnetic field around current carrying wires and electromagnets.
- Our lives have been changed immeasurably by devices with motors.

KS3 Waves:

- Longitudinal and transverse waves.
- Properties of waves.
- Waves can transfer energy
- Wave speed.
- Reflection and refraction.
- The electromagnetic spectrum.
- Uses of the different wavelengths in the electromagnetic spectrum.

KS3 Sound:

- Using scales and scientific equipment to measure sound
- Using an oscilloscope to investigate waves.
- Compare the different types of waves and their features. Describe sound travel in terms of energy transfer in
- different media and contrast speed with the speed of
- light.
- Waves
- Sound and energy transfer
- Loudness and pitch
- Detecting sound
- Echoes and ultrasound

KS3 Waves:

- Properties of waves
- Properties and behaviour of light.
- Reflection
- Refraction
- How the eye and the camera work
- Combining colours, coloured filters and coloured objects.

Content	Disciplinary Knowledge (Skills) This is the actions taken within a topic to gain substantive knowledge	Substantive Knowledge This is the specific, factual content for the topic, which is connected into a careful sequence of learning.
Conservation and Dissipation of Energy	Maths: Multiple equations and mathematical processes that students will need to employ. This makes up 30% of the marks available in the physics papers Use the formulae KE=1/2mv2 and E=1/2ke2 to solve problems Use the formula GPE=mgh to solve problems Use P=E/t to calculate power, Link power to useful and wasted energy Use the formula W=Fs to calculate work Use the formula to calculate efficiency Literacy: Key terms & definitions in context. Use and understanding of GSCE command words Literacy through the use of GCSE exam questions Sc1: Identify energy stores Describe how energy can be transferred, and apply the law of conservation of energy Explain how work is done to overcome friction Suggest how machines could be made more efficient State what happens to wasted energy	 Energy stores and systems Energy transfers in a system – conservation of energy Energy and work Changes in energy – GPE Changes in energy – kinetic & elastic Energy change sin systems – dissipation of energy Efficiency Electrical appliances Energy & power
	 Discuss whether energy is ever really "lost" Identify useful and waste energy types in electrical transfers 	

Energy Transfer by	Maths:	Conduction
Heating	Multiple equations and mathematical processes that students will need to employ.	 Heating & insulating buildings
	This makes up 30% of the marks available in the physics papers	• Energy changes in systems – specific heat capacity
		 Change of heat – specific heat capacity
	 Use the formula E=mcθ to solve problems 	
	Work out U values	
	Use the specific heat equation	
	Literacy:	
	 Key terms & definitions in context. 	
	 Use and understanding of GSCE command words 	
	 Literacy through the use of GCSE exam questions 	
	 Define "Conductors" and "Insulators" and give examples 	
	Define "Specific Heat Capacity"	
	Sc1:	
	 Use the particle model to explain how conduction works 	
	 State and explain what factors affect the rate of conduction 	
	 Model how global warming is caused in terms of infrared radiation 	
	 Identify methods to reduce heat loss 	
	 State factors that affect the rate of infrared transfer 	
	 Explain how each method works in terms of conduction, convection, and radiation 	
	 Explain what is meant by black body radiation 	
	 Explain how the rate of infrared transfer affects temperature, 	

Energy Resources	 Maths: Multiple equations and mathematical processes that students will need to employ. This makes up 30% of the marks available in the physics papers Calculate the energy efficiency of different fuels Literacy: Key terms & definitions in context. Use and understanding of GSCE command words Literacy through the use of GCSE exam questions Define "Supply" and "Demand Define "Renewable Energy 	 National & global energy resources - energy demands National & global energy resources - wind & water National & global energy resources - sun & geothermal National & global energy resources - energy & environment
	 Sc1: Identify which fuels are used to generate electricity Compare uses of different fuels, Identify different types of power plant Describe how a power plant produces electricity Identify advantages and disadvantages of power plants Identify the main causes of environmental concern when producing electricity Describe how nuclear powerplants work Compare power stations to one another in terms of advantages and disadvantages for the environment Identify how best to use different power stations to adapt to changes in demand Give examples of renewable sources of energy Identify advantages and disadvantages of renewable sources of energy 	

Electricity	 Maths: Multiple equations and mathematical processes that students will need to employ. This makes up 30% of the marks available in the physics papers Use the formula Q=It to solve problems Measure potential difference in a circuit Calculate the resistance of the components from the graphs 	 Circuit diagrams Current & charge PD & resistance Component characteristics - resistors diodes, LDR's & thermistors Series circuits Parallel circuits
	 Calculate the resistance of the components from the graphs Sketch IV graphs for an ohmic resistor, a filament lamp, and a diode Explain the shapes of these graphs, Literacy: Key terms & definitions in context. Use and understanding of GSCE command words Literacy through the use of GCSE exam questions Define an electric field Define what is meant by current Define what is meant by potential difference Define "Series Circuit" Define "Parallel Circuits" Sc1: State how charges affect one another, Describe how a static charge is formed and 	• Parallel circuits
	 discharged Explain the relationship between current and charge State how current and potential difference changes in series circuits State and explain what happens when you place resistors in series, State what happens to current and potential difference in parallel circuits State and explain what happens to resistors in parallel Perform a series of scientific investigations to investigate: How resistance changes with length The current and pd of a component Resistors in series Resistors in parallel 	

Mains Electricity	 Maths: Multiple equations and mathematical processes that students will need to employ. This makes up 30% of the marks available in the physics papers Calculate the current drawn by a device from its power rating, Use the formula Q=It and P=IV to solve problems Relate energy transfer to potential difference using E=QV Calculate the total energy supplied using P=IV and E=Pt Calculate the useful and wasted energy from an appliance's efficiency 	 ACDC & national grid Cables & plugs Elec Power & PD Currents & energy transfer Appliances & efficiency
	Literacy: Key terms & definitions in context. Use and understanding of GSCE command words Literacy through the use of GCSE exam questions Define AC and DC 	
	 Sc1: State what is meant by the live wire and neutral wire in mains electricity Describe the national grid and explain how it works Identify the wires in a UK cable Identify which fuse should be used in a device from its power rating Explain the function of the earth pin Describe the parts of a UK plug and explain the materials used Compare different appliances based on their efficiencies Describe energy transfers through a resistor Describe the energy transfer in a circuit Describe how to use an oscilloscope to measure frequency and peak pd 	

Molecules and	Maths:	
Matter	Multiple equations and mathematical processes that students will need to employ.	• Changes of state – <i>including recap of states of</i>
	This makes up 30% of the marks available in the physics papers	matter
		Internal energy
	 Use density equation to calculate mass or volume 	Specific heat capacity recap
	 Determine melting or boiling point from temp/time graph 	Specific latent heat
	Use specific latent heat in calculations	Particle motion in gases
	Measure specific latent heat of ice and Water	
	• Use pV = constant in calculations	
	Literacy:	
	Key terms & definitions in context.	
	Use and understanding of GSCE command words	
	 Literacy through the use of GCSE exam questions 	
	Define density including units	
	Define melting and boiling point	
	Define latent heat, specific latent heat of fusion and of vaporisation	
	Sc1:	
	• State properties of solids, liquids and gases,	
	 Describe particle arrangement of solids, liquids and gases 	
	Describe requirements to melt solids or boil liquids	
	• Explain how temperature changes affect internal energy, explain properties	
	of solid, liquid and gas	
	Describe how particle energy changes with heating	
	 Explain why mass stays the same after state changes 	
	Explain difference between boiling and Evaporation	
	Measure density of solids and liquids	
	Determine from density whether object will float	
	• Explain why gases are less dense in terms of energy and bonds	
	 Explain how gases exert pressure on a surface 	
	Explain gas pressure in terms of particles	
	Describe observable evidence of random motion	
	Explain why changing gas volume changes Pressure	
	 Explain why gas temperature increases when compressed rapidly 	
	Relate gas pressure to temperature	
	Relate changes in gas pressure to changes in volume	

Radioactivity	Maths:	• Atoms & radiation -including recap of structure of
	Multiple equations and mathematical processes that students will need to employ.	the atom
	This makes up 30% of the marks available in the physics papers	 Discovery of the nucleus - in common with chem
		 Isotopes
	 Represent alpha/beta emission as a diagram 	Radioactivity
	Calculate count rate after given number of half lives	Nuclear equations
	Use nuclear equations	Half life & decay
		Radioactive contamination
	Literacy:	
	Key terms & definitions in context.	
	 Use and understanding of GSCE command words 	
	 Literacy through the use of GCSE exam questions 	
	Define isotope	
	Define half-life and count rate	
	Define nuclear fission	
	Define chain reaction	
	Define nuclear fusion	
	Sc1:	
	 Describe an isotope and explain how they are formed 	
	• Understand the difference between a stable and unstable isotope and be able	
	to name some	
	 Describe how alpha/beta emission changes nucleus 	
	State how far each type of radiation travels in air	
	 State how materials absorb alpha/beta/gamma radiation 	
	State ionising power of radiation,	
	 Explain why ionising radiation is dangerous 	
	 Explain types of nuclear radiation used in medical imaging 	
	• Explain how to use radioactivity to destroy cancer cells	
	Choose appropriate radioisotope for a job,	
	Discuss how safe nuclear reactors are	
	Describe effect of radioactive decay on count rate	
	Describe use of radioisotopes in medicine	
	• Describe radon gas, how it is formed and the dangers it can present	
	Describe difference between spontaneous and induced fission	
	Explain how chain reaction is controlled in a reactor	
	Describe how nuclei can be fused	

 Explain where the sun's energy comes from Explain why fusion reactors are difficult to make Explain: why radon gas is dangerous, why nuclear waste is dangerous, what happens to nuclear waste 	

The Big Picture – Intent:

Physics has long been regarded as the fundamental science meaning that not only do other branches of science and engineering all stem from foundations in physics but by studying physics, we gain a deeper understanding of the entire universe around us. Our curriculum and our teaching provide our students with the essential knowledge and skills that they need to develop their critical thinking and problem-solving skills which will enable them not only to pursue a wide range of careers.

The Physics papers cover the following topics:

Paper 1 – (Topics 18–21): Energy; Electricity; Particle model of matter; and Atomic structure.

Paper 2 – (Topics 22–24): Forces; Waves; and Magnetism and electromagnetism and Space Physics

All students will be able to access the main content of all lessons and all students will be taught to the top with scaffolding, adaptive teaching and stretch and challenge provided where necessary.

Implementation:

Students undertaking Combined Physics have 10 science lessons a fortnight.

The units taught in Year 11 Physics are: Forces; Waves; and Magnetism and Electromagnetism

At Key Stage 4 most students follow AQA GCSE Combined Science Trilogy. The specification covers Biology, Chemistry and Physics. This is a linear course with all the examinations at the end of year 11. Students will sit six examinations, two in Biology, two in Chemistry and two in Physics. Each examination is one hour and fifteen minutes in length and worth 16.7% of the final grade. Students can be entered at either Foundation or Higher tier and will attain the equivalent of two GCSEs at 9-1 grades. There are six papers: two biology, two chemistry and two physics. Students are exposed to a knowledge-rich, spiralised curriculum, with the introduction of aspirational career pathways embedded in all units, ranging from pathologists to electrical engineers. Additionally, students are given the opportunity to discuss 'big questions' around the moral, social and ethical implications of many areas of science

Students learn about science through purposeful practical activities as part of day-to-day teaching and learning. Students will also undertake required practicals in class in order to deepen their understanding of scientific concepts and develop their skills of investigating, observing, experimenting and testing the validity of scientific concepts ideas.

Key Summative Assessments:

All units include:

- Retrieval homework
- Live marking
- Low stake quizzing
- Memory recall tasks
- End of Unit Tests

Required practical tasks:

- Specific heat capacity
- Resistance
- IV characteristics
- Density
- Force and extension
- Force & acceleration
- Waves
- Radiation and absorption

Autumn Term:

Forces. Waves

Spring Term:

 Magnetism and electromagnetism

Summer term:

GCSE Exams

Impact: By the end of Year 11 students will be confident with the fundamental and more complex principles, knowledge, and application of this knowledge in physics. Their practical skills will have developed both in discussing variables and describing methods but also analysing data, interpreting results, and suggesting improvements. It is also hoped that links can be made between other sciences as they develop as complete physicists.

Prior Knowledge

KS2: Forces

- Notice that some forces need contact between two objects,
- Identify the effects of air resistance, water resistance and friction, that act between moving surfaces
- Recognise that some mechanisms including levers, pulleys and gears allow a smaller force to have a greater effect

KS2: Space:

- Explain that unsupported objects fall towards the Earth because of the force of gravity acting between the Earth and the falling object
- Describe the movement of the Earth and other planets relative to the sun in the solar system
- Describe the movement of the moon relative to the Earth
- Describe the sun, Earth and moon as approximately spherical bodies
- Use the idea of the Earth's rotation to explain day and night and the apparent movement of the sun across the sky

KS2: Electricity and magnetism:

- Notice that some forces need contact between two objects, but magnetic forces can act at a distance.
- Observe how magnets attract or repel each other and attract some materials and not others.
- Describe magnets as having two poles.
- Predict whether two magnets will attract or repel each other, depending on which poles are facing.

KS2: Sound:

- Identify how sounds are made, associating some of them with something vibrating
- Recognise that vibrations from sounds travel through a medium to the ear
- Find patterns between the pitch of a sound and features of the object that produced it
- Find patterns between the volume of a sound and the strength of the vibrations that produced it
- Recognise that sounds get fainter as the distance from the sound source increases

KS2 Light:

- Recognise that light appears to travel in straight lines. Use the idea that light travels in straight lines to explain that objects are seen because they give out or reflect light into the eye.
- Explain that we see things because light travels from light sources to our eyes or from light sources to objects and then to our eyes

KS3 Motion and pressure:

- Speed and distance-time graphs
- Pressure in gases and liquids.
- Turning forces.

KS3 Forces:

- Types of forces squashing & stretching, drag forces & friction, balanced & unbalanced
- Effects of forces on shape and motion

KS3 Turning points in physics:

- Gravitational attraction
- The solar system & forces.
- Redshift, the big band and universal expansion.
- Atomic model & isotopes
- Radiation
- Electromagnetism

KS3 Electromagnets:

- A field is a region where there is a force on an object (a mass, charge, or magnetic material).
- A field is an abstract concept, represented by physical lines (which are not the field).
- Compasses also show a magnetic field around current carrying wires and electromagnets.
- Our lives have been changed immeasurably by devices with motors.

KS3 Waves:

- Longitudinal and transverse waves.
- Properties of waves.
- Waves can transfer energy
- Wave speed.
- Reflection and refraction.
- The electromagnetic spectrum.
- Uses of the different wavelengths in the electromagnetic spectrum.

KS3 Sound:

- Using scales and scientific equipment to measure sound
- Using an oscilloscope to investigate waves.
- Compare the different types of waves and their features. Describe sound travel in terms of energy transfer in
- different media and contrast speed with the speed of
- light.
- Waves
- Sound and energy transfer
- Loudness and pitch
- Detecting sound
- Echoes and ultrasound

KS3 Waves:

- Properties of waves
- Properties and behaviour of light.
- Reflection
- Refraction
- How the eye and the camera work
- Combining colours, coloured filters and coloured objects.

Content	Disciplinary Knowledge (Skills) This is the actions taken within a topic to gain substantive knowledge	Substantive Knowledge This is the specific, factual content for the topic, which is connected into a careful sequence of learning.
Forces in Balance	Maths: Multiple equations and mathematical processes that students will need to employ. This makes up 30% of the marks available in the physics papers • Work out the magnitude of a vector quantity • Use scale diagrams • Find a resultant vector for parallel and perpendicular vectors • State the unit of forces • Use Newton's laws to explain motion • Use F=ma formula to solve problems • Calculate resultant force • Use the parallelogram of forces to calculate a resultant force • Find vertical and horizontal components of forces at an angle • Combine two vectors that are not at right angles • Use SOHCAHTOA and graphical methods to find solutions to vector problems Literacy: • Key terms & definitions in context. • Use and understanding of GSCE command words • Literacy through the use of GCSE exam questions • Define "scalar" and "vector • Define "Resultant Force" • Define "centre of mass"	 Vectors and scalars Forces between objects Resultant Forces Centre of mass The parallelogram of forces Resolution of forces

	Define "counterweight"	
	 Sc1: Describe what is meant by a vector quantity Describe what is meant by a scalar quantity Give examples of scalars and vectors Describe displacement Describe what is meant by a contact force State what happens to an object when resultant force is zero or not zero Use the idea of centre of mass and moments to explain stability/toppling over State Newton's Laws of Motion Describe and carry out a practical to determine the centre of mass of a 2D shape Draw a parallelogram of forces 	
Motion	Maths: Multiple equations and mathematical processes that students will need to employ. This makes up 30% of the marks available in the physics papers • Plot and distance-time graphs • Calculate speed from the graph • Use the formula a=(v-u)t/2 to solve problems • Plot a speed-time graphs • Plot a speed-time graph from a distance-time graph • Calculate acceleration and distance travelled from the graph • Make reference to key calculated values	 Speed distance time Velocity and acceleration Velocity time graphs Analysing motion graphs
	Literacy: Key terms & definitions in context. Use and understanding of GSCE command words Literacy through the use of GCSE exam questions Define acceleration Define displacement 	

	 Define distance Define speed Define velocity Sc1: Describe an objects motion from its motion graph Explain the meaning of negative acceleration Describe an object's motion from its motion graph Interpret motion graphs to find meaningful values from gradients or areas Use motion time graphs to accurately describe an object's journey 	
Forces and Motion	 Maths: Multiple equations and mathematical processes that students will need to employ. This makes up 30% of the marks available in the physics papers Calculate resultant force from acceleration and mass Calculate momentum including units Measure extension of a stretched object 	 Force and acceleration Weight and terminal velocity Forces and braking Momentum Forces and elasticity
	 Literacy: Key terms & definitions in context. Use and understanding of GSCE command words Literacy through the use of GCSE exam questions Define inertia Define terminal velocity Define momentum Define elasticity Define limit of proportionality 	
	 Sc1: Relate acceleration to force and mass Describe motion of a falling object 	

	 Describe resultant force for terminal velocity State difference between mass and weight State forces opposing forward motion of a vehicle Solve problems involving the conservation of momentum Describe and explain factors affecting stopping distance Explain why increasing the impact time reduces the force Explain: why helmets and cushioned surfaces reduce impact forces, why seatbelts and airbags reduce force in an accident, how side impact bars and crumple zones work; work out if a car in a collision was speeding State factors that affect impact force, Describe how spring extension relates to force applies 	
Wave Properties	 Maths: Multiple equations and mathematical processes that students will need to employ. This makes up 30% of the marks available in the physics papers Relate wave speed to frequency and wavelength Use the formula v=fλ 	 The nature of waves Properties of waves Reflection and refraction Sound waves
	Literacy: • Key terms & definitions in context. • Use and understanding of GSCE command words • Literacy through the use of GCSE exam questions • Define ultrasound • Define seismic waves	
	 Sc1: Identify types of waves Label key features of waves Give examples of uses of waves Investigate waves propagating on a string Describe reflection and refraction 	

	 State when reflection and refraction of plane waves will happen Explain why reflection and refraction occur Describe sound waves Describe how the loudness and pitch of a soundwave are affected State limits of human hearing Identify sound waves from oscilloscope traces 	
Electromagnetic Waves	 Maths: Multiple equations and mathematical processes that students will need to employ. This makes up 30% of the marks available in the physics papers Relate wave speed to frequency and wavelength Use the formula v=fλ 	 The electromagnetic spectrum Light, infrared, microwaves and radio waves Communications Ultraviolet waves, X-rays and gamma rays X-rays in medicine
	Literacy: • Key terms & definitions in context. • Use and understanding of GSCE command words • Literacy through the use of GCSE exam questions • Define white light • Define ionising radiation	
	Sc1:Identify parts of the EM spectrum	
	 State why some EM waves are dangerous Identify wavelengths of visible light Identify different radio waves for different purposes Describe fibre optics State which materials will absorb X-Rays 	
Electromagnetism	Maths: Multiple equations and mathematical processes that students will need to employ. This makes up 30% of the marks available in the physics papers	 Magnetic fields Magnetic fields of electric currents Electromagnets in devices
	Relate the ratio of coil numbers to ratio of potential differences	The motor effectsThe generator effectsThe alternating current generator
	Literacy: Key terms & definitions in context.	TransformersTransformers in action

 Use and understanding of GSCE command words
 Literacy through the use of GCSE exam questions
 Define an electromagnet and label a diagram
Define the motor effect
Define the generator effect
Sc1:
 State the force rule for magnets near each other
 Draw field lines around a fixed magnet
 Draw magnetic field lines around a current carrying wire
 State devices that use electromagnets
Explain induced magnetism
 Explain how electromagnets allow their devices to work
 Use the Left Hand Rule to determine the force on a wire in a magnetic field
• Use induced potential to explain how current can be induced in a wire and state
 what affects its size and direction
 Label a diagram of a generator and explain how it works
 Relate the ratio of coil numbers to ratio of potential differences
Discuss transformer efficiency
 State how the strength and direction of the field can be varied
 Label a diagram of a simple motor and explain how it works
 Explain what is meant by induced potential
 Describe a transformer and what it does
State where transformers are used
Explain how transformers work
 Use the transformer formula to solve problems
 Explain why high voltages are used in overhead power cables